

Performance bottlenecks in FLASH

Chris Daley 27th July

An Advanced Simulation & Computing (ASC) Academic Strategic Alliances Program (ASAP) Center at The University of Chicago

- FLASH is a multiphysics, adaptive mesh refinement (AMR) code used to simulate problems occurring in e.g. astrophysics, plasma physics and cosmology.
- □ The center will use FLASH in 2009/2010 to:
 - study turbulent nuclear combustion.
 - perform a systematic validation of current models of type la supernova.
- Some of the supernova simulations carried out in early 2009 spent up to 1/3 total runtime in I/O!

Worst case I/O performance: (from a 12-hour experiment run on 2048 cores of Intrepid)

Туре	Approx size (GB)	Number of times written	Total runtime impact
Checkpoint file	8.0	10	3%
Plot file	2.5	104	9%
Particle file	0.1	417	22%

Checkpoint file: Complete state of simulation in double precision.

- Plot file: Subset of grid variables in single precision.
- Particle file: All particle attributes in double precision.

□ This is a lot of data and a high write frequency:

- FLASH I/O is not particlularly inefficient.
 - Already makes use of parallel I/O through the HDF-5 and Parallel-netCDF libraries.
- We recently started work with staff at Argonne National Laboratory to further improve FLASH I/O.
 - We are going to investigate:
 - using a different FLASH data file layout to maximize data throughput.
 - buffering particle data for a few steps to decrease the frequency of writes.

There is very poor scaling during AMR re-griding events with the PARAMESH package.

Weak scaling graph showing mean inclusive time spent in amr_refine_derefine subroutine during a single re-griding event in White Dwarf simulation on Intrepid

> Only significantly impacts those simulations that use large numbers of processors and frequently refine / derefine.

Side note: PARAMESH no longer actively developed.

- Any modifications need to be made by Flash team.
- We may use other mesh packages in future.