
An Advanced Simulation & Computing (ASC)
Academic Strategic Alliances Program (ASAP) Center

at The University of Chicago

The Center for Astrophysical Thermonuclear Flashes

Performance bottlenecks in FLASH

Chris Daley

27th July

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

FLASH and introduction to main bottleneck

❑ FLASH is a multiphysics, adaptive mesh refinement (AMR) code

used to simulate problems occurring in e.g. astrophysics, plasma
physics and cosmology.

❑ The center will use FLASH in 2009/2010 to:
– study turbulent nuclear combustion.
– perform a systematic validation of current models of type

Ia supernova.

❑ Some of the supernova simulations carried out in early 2009
spent up to 1/3 total runtime in I/O!

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Breakdown of bottleneck

Worst case I/O performance:

(from a 12-hour experiment run on 2048 cores of Intrepid)

❑ Checkpoint file: Complete state of simulation in double precision.
❑ Plot file: Subset of grid variables in single precision.
❑ Particle file: All particle attributes in double precision.

❑ Always worth investigating the core dump using gdb (or other

unnamed proprietry debuggers):

– Compiler options can help locate bugs.
– Good practise to customize [C|F|L]FLAGS_DEBUG in

Makefile.h to use the full range of debugging options
for your compiler.

– The sites directory in the FLASH source tree contains
sample Makefile.hs with good starting points.

❑ The infamous: “Segmentation fault (core dumped)” can be
extremely hard to resolve unless you use compiler options and/or
a memory debugger.

❑ Note: Debugging becomes much easier when binaries are
compiled with debugging information (-g option).

❑ Always worth investigating the stack backtrace using gdb (or

some other debugger, e.g. totalview):

gdb flash3 core

(gdb) bt

#0 0x0000000000490ca4 in gr_expanddomain (mype=0, numprocs=1,
particlesinitialized=.FALSE.) at gr_expandDomain.F90:157

#1 0x0000000000432d88 in grid_initdomain (mype=0, numprocs=1, restart=.FALSE.,
particlesinitialized=.FALSE.)

 at Grid_initDomain.F90:94

#2 0x0000000000420f02 in driver_initflash () at Driver_initFlash.F90:152

#3 0x0000000000427fc9 in flash () at Flash.F90:38

❑ Frame #0 shows the line containing the memory violation.
– Note: This itself may be a consequence of a memory

error that occurred long ago....

Type Approx size
(GB)

Number of
times written

Total runtime impact

Checkpoint file 8.0 10 3%

Plot file 2.5 104 9%

Particle file 0.1 417 22%

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Bottleneck discussion

❑ This is a lot of data and a high write frequency:

– FLASH I/O is not particlularly inefficient.
• Already makes use of parallel I/O through the

HDF-5 and Parallel-netCDF libraries.

❑ We recently started work with staff at Argonne National
Laboratory to further improve FLASH I/O.

– We are going to investigate:
• using a different FLASH data file layout to

maximize data throughput.
• buffering particle data for a few steps to decrease

the frequency of writes.

❑ Always worth investigating the stack backtrace using gdb (or

some other debugger, e.g. totalview):

gdb flash3 core

(gdb) bt

#0 0x0000000000490ca4 in gr_expanddomain (mype=0, numprocs=1,
particlesinitialized=.FALSE.) at gr_expandDomain.F90:157

#1 0x0000000000432d88 in grid_initdomain (mype=0, numprocs=1, restart=.FALSE.,
particlesinitialized=.FALSE.)

 at Grid_initDomain.F90:94

#2 0x0000000000420f02 in driver_initflash () at Driver_initFlash.F90:152

#3 0x0000000000427fc9 in flash () at Flash.F90:38

❑ Frame #0 shows the line containing the memory violation.
– Note: This may be a consequence of a memory error that

occurred long ago....

❑ The original cause of most segfaults is an array that is accessed

out of bounds or accessed before being allocated:
– Add bounds checking: -fbounds-check.

❑ Other important options:
– Add a default initial value: -finit-real=nan
– Add a check for floating point exceptions:

-ffpe-trap=invalid,zero,overflow
– Add a stacktrace print out: -fbacktrace

❑ Original memory error causing seg-fault (from previous slide):
–

The ASC/Alliances Center for Astrophysical Thermonuclear Flashes
The University of Chicago

Other significant FLASH bottleneck

❑ Side note: PARAMESH no longer actively developed.

– Any modifications need to be made by Flash team.
– We may use other mesh packages in future.

❑ Always worth investigating the stack backtrace using gdb (or

some other debugger, e.g. totalview):

gdb flash3 core

(gdb) bt

#0 0x0000000000490ca4 in gr_expanddomain (mype=0, numprocs=1,
particlesinitialized=.FALSE.) at gr_expandDomain.F90:157

#1 0x0000000000432d88 in grid_initdomain (mype=0, numprocs=1, restart=.FALSE.,
particlesinitialized=.FALSE.)

 at Grid_initDomain.F90:94

#2 0x0000000000420f02 in driver_initflash () at Driver_initFlash.F90:152

#3 0x0000000000427fc9 in flash () at Flash.F90:38

❑ Frame #0 shows the line containing the memory violation.
– Note: Symptoms of the error may occur long after the

original memory error.

❑ There is very poor scaling during AMR re-griding events with the

PARAMESH package.

❑ Only significantly impacts

those simulations that use
large numbers of
processors and frequently
refine / derefine.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

